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ABSTRACT

oo
ST AN A
This report describes the development program wherein a four-element dynamic
face seal was evaluated for an application requiring positive separation of cryo-
genic bearing coolant and hot gas in a turbopump. The objective was accomplished
by separating the media via a neutral gaseous nitrogen purge. This system was
applied to the M-1 turbopump and performed successfully.

Initially, 1t was attempted to develop the seal leakage control without
having to rely on a buffer gas. This effort was discontinued when it became
apparant that extrapolation of conventional and small size seal technology did not
produce the required minimum leakage performance for this critical applicatiocn.

The solution of using a buffer gas provided an expediency to allow pro-
ceeding with turbopump and engine development. ({Ctucgf y L}
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I. SUMMARY

The activity and results of the program to develop the turbine~end dynamic
sealing system for the M-1 engine oxidizer turbopump assembly are descrilbed.

The fluids to be separated are liquid oxygen at a pressure of 550 psia and
a gas consisting of a mixture of hydrogen and steam at a temperature of Q00°F and
a pressure of 125 psia. Shaft size and speed dictate a seal face rubbing velocity
of about 120 ft/sec.

The conventional principle of a rubbing contact mechanical face seal was
selected as the seal concept to be pursued. Within this scope, varicus design
alternatives were considered and seal vendor capabilitles investigated. The
primary candidate was the Sealol seal, a design that utilizes a primary and a
secondary seal face for liquid oxygen as well as for hot gas sealing. Also, a
Borg Warner seal with a modified design was investigated.

Leakage control was recognized as the principle problem and the following
development goal was established for allowable dynamic leakage:

Liguid Oxygen Seal - Primary: 30,000 Standard cc/min (1.06 sSCFPM)
Liquid Oxygen Seal - Secondary: 100 Standard cc/min (3.531 x 10-3 SCFM)
Hot Gas Seal - Primary: 3,000 Standard cc/min (0.106 SCEM)
Hot Gas Seal - Secondary: 10 Standard cc/min (3.531 x 10-% SCFM)

Generally, it appears that performance of a rubbing contact dynamic face
seal, in terms of wear and minimum leakage, 1s strongly influenced by face material
compatibility and load balance of the seal face. To develop optimum qualities for
the subject seal, the full scale test effort was supplemented in two ways. A seal
face material evaluation program was conducted on a subscale level and the effective
diameter of the seal bellows was determined through the use of measurement tech-
niques.

Full scale prototype tests were used to investigate possible leakage causes
(i.e., vibration that could cause oscillatory separation of the seal faces; carbon
nosepiece distortion caused by thermal and mechanical stress; pressure varilation
and gap effects caused by boiling of liquid oxygen across the seal face; incorrect
face loading; and seal face flatness). As development continued, leakage control
was somewhat improved, but still exceeded requirements. Typical leakages were as
much as 800,000 sce/min (28.25 SCFM) across the liquid oxygen primary seal and
60,000 scc/min (2.12 SCFM) across the hot gas primary seal.

In evaluating the degree of performance accomplished through development,
it was evident that significant further improvement would be needed to achieve
either the established goal or to obtaln the minimum performance necessary for
turbopump operation. Timely accomplishment of this by further development of the
same basic concept was considered impractical. Accordingly, the seal system was
modified. This modification provided an inert (gaseous nitrogen) gas purge into
the neutral cavity to supply both a secondary seal back pressure and a "washing"
action to carry any primary leakage out through the respective cavity drains.
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The technique of purging the "neutral"” seal cavity provided the necessary
seal effectiveness to prevent the mixing of fluids being separated. This modifi-
cation of the seal system was installed into the M-1 Model I Liguid Oxygen Turbo-
pump and it was successfully utilized and operated without failure during turbo-
pump testing. However, the cryogenic bearing coolant for this test series was
liquid nitrogen and not liquid oxygen.

II. INTRODUCTION

The large size dynamic seal for liquid oxygen =nd oxygen/hydrogen hot gas
service, was developed by the Aerojet-General Corporation under contract to the
lNational Aeronautics and Space Administration. This seal development was for the
specific application in the M-1 Engine Liquid Oxygen Turbopump.

In this turbopump the power transmission components are located between a
centrifugal cryogenic propellant pump and a hot gas impulse turbine. A common shaft
provides the transmission of driving power from the turbine rotor to the pump impel-
ler, Bearings are cooled by the liquld oxygen supplied from the pump discharge and
circulated through the power transmission housing. The cryogenic fluid in the
bearing housing is kept at a relatively high pressure {55C psia) to maintain a
satisfactory vapor pressure margin in the bearing coolant circuit. It was felt
that for bearing coolant effectiveness, the liquid phase must be maintained in the
fluid. To avoid the hazard of an explosion which could result from mixing of the
hydrogen-rich turbine gas with the liquid oxygen bearing cooclant, a reliable seal
for separation of the fluid media i1s essential. Mechanically, it is necessary that
the axial length of this seal assembly is kept to 2 minimum to keep the overhang of
the turbine rotor within practical limits and maintain a safe critical speed value.

The development effort of this seal, which is lccated at the turbine inter-
face of the M-1 turbopump, is the subject of this report.

ITT, SEAL DEVELOPMENT PROGRAM

A, PROGRAM OBJECTIVES

1. Seal Application in the M-1 Liquid Oxygen Turbopump

The location of the subject seal assembly in the M-1 Liguid
Oxygen Turbopump is shown by Figure 1. The purpose of this seal is to separate
the liquid oxygen in the bearing housing from the hydrogen-rich hot turbine gas
in the adjoining turbine cavity. Because the mixing cf these fluids has the
potentiality for an explosion, the effectiveness of the seal assembly is of vital
importance for dependable turbopump operation and affects the over-all system
design as to whether the pump can be wet or dry during coast periods prior to
engine operation. This highly sensitive operating environment establishes the
desirability of "Zero Leakage" seal performance.
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2 Unusual Reguirements

Attainment of a true 'zero leakage' seal performance is desirable
but in view of the current technology status, it is generally considered an impossi-
bility with rotating dynamic seals. For the specific aprlication an interim goal
was established permitting some mixing of liquid oxygen with hot gas at a maximum
permissible rate of 1C0 scc/min liquid oxygen and 10 scc/min hot gas under dynmamic
operating conditions. Maximum allowable dynamic leakage past the primary LCX seal
faces is 30,0CC scc/min for the LOX seal and 3,000 scc/min for the hot gas seal.
Maximum static leakage of liquid oxygen into the turbine cavity was established at
18 scc/minu This performance was to be obtained fthrough development improvements
by June 1966.

The volume ratio of cxygen gas at standard atmospheric pressure
and temperature versus liquid oxygen is approximately . ﬁ/lo This means that a
maximum aliowable dynamic leakage of 100 standard cubic centimeters per minute
(sce/min) is only 100/800 = 0.12 cc/min of liguid oxygen. This is an extremely
low leakage requirement for a dynamic seal, particularly for one cf the large
proportions required for the 4 in. shaft diameter of the turbopump.

Seal face surface finish and flatness contribute significantly
to seal performance for a rubbing contact seal. However., these qualities become
more difficult to control with the relatively large diameter seal faces needed in
this application. Dimensionai stability is unfavorably .nfluenced by the extreme
axial and radial temperature gradients across the seal assembly separating the
hot gas cavity on one side and the cryogenic fluid cocled bearing housing on the
other. Heat generation resulting from dynamic frictior is a further cause of
thermal stress and associated seal face distortion. I% appeared that optimum
matching of seal face materials would be a decisive influence in achieving the
leakage goal with a rubbing contact seal.

B. DESIGN SELECTION

1. Design Criteria

The primary requirement for this seal is to prevent mixing of
the liquid oxygen with the hot turbine gas. Specific reguirements include:

a. Maximum Allowable Dynamic Leakags Enies

o

000 Standard cc/min
' Standard cc/min

Liquid Oxygen Seal - Frimary: S
Liguid Oxygen Seal - Secondary. 127

Hot Gu:s Seal - Primary:
Hot Gas Seal - Secondary:

3,000 Standard cc/min
17 Standard cc/min
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b. Dynamic Operating Conditions

Shaft Speed 4,000 rpm, Maximum
Shaft Acceleration Rate 120 Revolutions per
(Startup) Sec”, Maximum
Allowable Shaft Runout 0.007-In.
(Radial)
Shaft Axial Play 0.018 to 0.023-In.

Fluid Temperature

Liquid Oxygen Side Minus 297°F
Hot Gas Side 917°F, Maximum

Fluid Pressure

Liquid Oxygen Side 550 psia
Hot Gas Side 125 psia

Operating Medium

Pump Side Liquild Oxygen
Turbine Side Turbine Gas (90% Hy +
10% HZO by Volume)
Number of Starts 30
Life 10 Hours

c. Statlce Turbopump Operating Conditions

Maximum Pressure at 65 psia for
Liquid Oxygen Side 12 hours
Minimum Pressure at 0 psia

Hot Gas Side

2. Seal Selection and Alternative Solutions

The conventional principle of a rubbing contact mechanical seal
was selected as the seal concept to be pursued during development. Within this
scope, consideration was given to several arrangements of axial face seals, shaft
riding seals, and a combination thereof. The concept of using two face seals in
series for liquid oxygen and another two face seals in series for hot gas was
selected based upon the results of this study. This concept included incorporation
of a vent between each palr of seal faces to permit bleed-off of leakage from the
primary liquid oxygen and primary hot gas seals. Liquid oxygen and hot gas leakage
past the respective secondary seals is evacuated through a common "neutral' vent.
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Several seal manufacturing firms, inciuding Sealol, Gits Bros
Borg-Warner, and Chicago Rawhide were consulted regarJLhﬁ their experience aﬂd
I manifacturing capability. The Sealol Corporation of Providence, Rhode Island,
wa s seﬁected as the primary cubzontractor because they indicated they were capable
of menufacturing a seal for this application.

bly consis®ts of primery srnd secondary seals on both
the ligiid oxygen and a2 side. Each of the four seal units is a bellows
vype, axial, mechanical face al. The seal nosepieces zre carbon rings bonded to
their regpeclive retainers, E&ach pair of seal faces contacts a common rotating
ring. There are two rotating rings, one for the sealing of liquid oxygen and one
for hiot gas. The seal faces are held in contact with the respective rotating rings
bty the syring force of the tellows and the hydraulic pressure of the fiuid being
sealed, Ary fluid which passes thrOugh the primary ccuals is vented to.the atmosphere
ty seperate line: for liquid oxygen and turbine gas, thus providing low upstream
prassire on the secondary seals. Leakage through the secondary liquid oxygen and
hot gas seals is vented through a common line. A gen(*fl Ll¢ubtrat10n of the seal
1s shown in Figures 2 and 3. The average rubbing velonity for this seal configur-
ation is approximately 115 ft/cec,

L,  Borg-Warrer Seal

This seal ascembly, Figures 4 and 5, wact developed as an slternative
design. It consists of three face seals, arranged axislly in series. The two outer
seale are the primary liguid oxygen seal and the primary hot gas seal, respectively.
The ascsembly is designed so that any leakage from the primsry liguid oxygen seal or
from tne primary hot gas seal will be segregated from each cther by an intermediate
seazl. Any leakage from elther of the two outer seals is vented separately to atmos-
phers., There are floatirg carbon rings between the stoticnary seal faces and the
rotating rings. These floating carbon rings are intend=sd to eliminate the effect
of thermal deformations normally developed in retaziners. Fsch seal has metsl
bellows and the arrangement provides for separate rotating rings spsced or the shaft
by sleeve spzcers Rubtirng velocity for this seal geometry 1s approximately 95 ft/sec.

+

C. SEAL DEVELOPMENT TESTING

1. Scope oi Test Activity

a. Face Material Evaluvation
{1 Test Equipment

An ¢valuation program for cardidate liquid oxygen and
hot gas seal face materials was initiated concurrently witn the design and manu-
facturing activity for the prototype seal configuration. This evaluation program
was conducted with subscale _)/9 full élZG) seal asgemblies because these seals
waere avallable and the existing tester configurations were adaptable. The tester,
which is shown on Figure 6, consists of a drive unit =zad the test head. The drive
unit is made ur of a 27 HP alr motor connected to a Titan I gearbox and the test
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Subscale Seal Test Fixture
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Figure 6 (Sheet 2 of 2)
Subscale Seal Test Fixture

Page 12






head is designed to simulate the specific requirements of the full size application.
Pertinent specifications are summarized as follows:

Full Size Sub Scale
Condition Value Value Reason for Difference
Rubbing Velocity 115 Ft/Sec 115 Ft/Sec ———
Operating Pressure - Stress Limitation in
Liquid Oxygen 450 psi 300 psi Bellows
Operating Pressure -
Hot Gas 125 psi 125 psi -—
Liquid Oxygen Side Test Liquid Ligquid
Fluid Oxygen Oxygen -—
Hot Gas Side Test
Fluid H2 + HEO Heated GN2 Hot Gas Availability
Bellows Preload 11 psi 11 psi -—-
Shaft Speed 4,000 rpm 6,500 rpm To Maintain Equal Rubbing

Velocity

The over-all arrangement of the test eguipment and
facility 1is shown 1In Figure 7.

(2) Test Development Activity

Six combinations of nosepiece/rotating ring materials
for liquid oxygen and four combinations for hot gas were evaluated. A summary of
the subscale test activity is shown in Tables 1 and 2.

(3) Test Development Results
(a) Liquid Oxygen Application

The best results were obtained with the combination
of PO3N carbon operating against a LWS plated rotating ring. The PO3N 1s a pure
graphite material manufactured by Pure Carbon Company and the LWS5 plating consists
of 25% tungsten carbidé, 7% nickel, and a mixture of tungsten chromium, deposited
0.002 in. thick on Inconel X base metal by a flame plating process (Linde Company).

The next best combination was found to be P5N
carbon operating against LW5 plating. The P5N carbon 1s a hard graphite materilal
treated with chemical salt impregnation. It is somewhat harder than PO3N and
showed evidence of heat checks on the rotating rings.
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Figure 7

Subscale Seal Test Facility
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The combinations of either PO3N carbon or P5N
carbon running on a chrome plated rotating ring produced flaking-off of the plating
and failure of the seal surfaces. Examination of the plating, after the failures,
indicated excessive softness of the chromium deposit. It was concluded that the
failures may have been caused by substandard chrome-plating or by excessive pressure
loading of the rotating ring. Subsequent satisfactory performance of PSN carbons
with the full scale chrome plated rotating rings supports this conclusion because
no failures occurred with full scale rings plated by the Sealol Company.

In general, heavier transfer of carbon from the
noseplece to the rotating ring was experienced with chrome plated rings than with
LW-5 plated rings.

(b) Hot Gas Application

Both CDJ-83 and EY105 in combination with LW-5
plating appeared to be satisfactory. CDJ-83 is a carbon material manufactured
by the National Carbon Company, and EY105 is a carbon material made by Morganite,
Tnc. The chrome plating failed with CDJ-83, but this failure was probably also
the result of the improper application of plating.

(c) Carbon to Retainer Bonding

Unlike the liquild oxygen seal, where the differ-
ential expansion between the carbon and its retainer causes a tighter fit and a
better retention of the carbon, thermal effects in the hot gas seals produce the
opposite effect of loosening the carbon fit. This necessitates bonding of carbon
to 1ts retainer. Two materials, Teflon and Epon 422, were evaluated for this
application. Teflon failed after 400 sec operation and this failure was evidenced
by the extrusion of Teflon from the bond indicating that the noseplece had not been
fully sealed in the retainer. Performance of the Epon 422 appeared to be satis-
factory.

b. Full Scale Seal Testing
(1) Test Equipment

The general arrangement of the test equipment is shown
in Figure 8 and Figure 9. Initially, the test ring was similar to the previously
described sub sctle tester, but as a result of test experilence, the drive was
modified from an alr motor to a more powerful gaseous nitrogen turblne drive with
automatic speed control for close simulation of turbopump operating conditions.
The tester was operated in the Aerojet-General Corporation Cryogenics Laboratory
where a liquid oxygen supply at required pressures up to 450 psi was avallable
from a 1,000 gallon storage tank. Seal leakage was vented vlia manifold lines and
passed through a flow measuring system to exhaust outside of the test cell.
Originally, a volumetric displacement system was intended for measuring leakage.
This was found lnadequate for the application and a flowmeter system was designed
and purchased; however, it was Installed only a short time before the termination
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Figure 9 (Sheet 1 of 3)
Full-Scale Seal Tester
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Full-Scale Seal Tester
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of the testing and had not contributed to the leakage rate evaluation. All
leakage rates throughout the program were calculated from the flow continuity
equation based upon cross-sectional area, pressure, and temperature of the leaking
gas.

(2) Test Development Activity

Six test series were completed between February and
September 1964, Four seal assemblies were used in the program and 8,650 seconds
of operational time was accumulated. The test activity was carried out in two
phases.

(a) Phase I - Preliminary Evaluation of the Sealol
Seal Performance

Two seals (D/N 280115, S/N 20 and S/N 22) were
used and the seal testing was combined with test equipment shakedown and instrumenta-
tion evaluation activity. This activity covered the period from February to April
1964, A typical prototype seal is shown on Figure 10.

(b) Phase II - Investigation of the Causes of High
Leakage Rates through the Primary Liquid Oxygen Seal

Three seals were used, the Sealol seal (P/N 280115,
S/N 19 and S/N 23), and the Borg Warner seal (P/N 284938, S/N 002). This activity
covered the period from April through June 1964.

A chronological summary of the above Phase I and
Phase IT test activity is given in Table 3.

(3) Test Development Results
(a) Phase I - Preliminary Evaluation of the Sealol Seal

The results from the first tests of Sealol seals
(S/W 20 and S/N 22) at 4,000 rpm and 400 psi in liquid oxygen indicated an average
seal face carbon wear rate of 0.005 in. per 1,000 sec. This average was based upon
a total operating time of approximately h,OOO sec and was considered satisfactory
at the time, Theéleakage rate across the primary liquid oxygen seal was in the
order of 1.6 x 10° scc/min, rather than the maximum of 30,000 scc/min allowed by
specification. As a result of this high leakage, a back pressure of approximately
100 psi developed in the primary seal vent line causing further unacceptably high
leakage across the secondary liquid oxygen seal. Subsequent testing was directed
toward establishing the causes of the unacceptable high leakage rates. The
following possible causes were considered:

1 Vibration of the seal, causing separation of
the carbon seal nosepilece and the rotating ring.
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2 Distortion of the carbon noseplece caused
by thermal or mechanical stresses and dimensional instability of the carbon
retainer assembly.

3 Excessive back pressure in the primary seal
vent line.

E Unstable pressure conditions on the sealing
surface caused by boiling of liquid oxygen across the seal contact face.

5 Incorrect seal face loading.
(b) Phase II - Investigation of Possible Leakage
Causes

1 Vibration
The natural frequency of the undamped seal

and the vibratory characteristics of a damped seal were determined by the frequency
survey method on a shake table. When the seal bellows was compressed axially, as
in the turbopump or tester installation, the lowest vibrational mode was the axial
oscillation of the middle part of the bellows, with no movement of the carbon
nosepiece. The vibration frequency was approximately 333 cycles per second, which
ig five times higher than the maximum shaft operating frequency of 66 cycles per
second. The addition of 11 U-shaped dampers uniformly spaced around the seal
circumference causes a frequency reductlon to 269 cycles per second., The damped
configuration was tested dynamically at design speed and pressure with no noticeable
reduction in the previously experienced leakage of 1.6 x 10 scc/min. From this,
it was concluded that the addition of dampers had no effect upon leakage, although
they will most likely be beneficial in preventing bellows fatigue failures.

2 Distortion of Carbon Nosepiece and Rotating
Ring

This was investigated in two ways;

a By making a direct measurement of flatness
before and after test.

b By eliminating the influence of thermal
and mechanical stresses upon leakage rates in actual tests.

Electronic type surface gages capable of
measuring surface deviations of the order to 10 micro-inches were used to determine
the flatness of the carbon nosepiece and of the rotating ring prior to installation
and after disassembly. The typical surface flatness of a lapped carbon 1s shown
in Figures 11 and 12. These indicate that the seal is typically saddle-shaped
with two broad concavities 200 to 400 micro-inches deep, spaced approximately
180 degrees apart. The stiffness of the nosepiece is extremely low and light
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local pressures (finger pressure) can easily change surface topography. The
loading by the stylus of the measuring instrument is 0,10 gram which i1s considered
negligible.

In contrast, the flatness of the rotating
ring 1s typlecally within 25 micro-inches and remains constant under normal handling
conditions. However, during operation, transfer of carbon to the rotating ring
occurs, causing the surface to be no better than 100 micro-inches in flatness.

It appears, then, that the fiexibility of the
7 in,., diameter, l/h in. thick carbon nosepiece is such that it can easily change
its shape under local forces. If these forcesg are uniformly distributed cir-
cumferentially, the effect would be to flatten the carbon against the rotating
ring. However, if a local interfacial force arises between the carbon and the
ring, caused, for example, by liquid boiling or a hydrodynamic film, it can easily
distort the sealing surface locally.

The effect of thermal and pressure stresses
was investigated in a gross manner by replacing the carbon nosepiece, which 1is
normally installed with C.010-in. radial interference and operates with 0.017-in.
interference at cryogenic temperatures, with a Teflon bonded insert installed with
0.005-in. radial clearance. When tested at design speed and pressure, this seal
did not show any improvement in the leakage.

A seal with an interference fitted carbon
was subjected to 13 chill and heat cycles (from -320°F 1liquid nitrogen tempera-
ture to +100°F gaseous nitrogen temperature) while stationary. While the leakage
increased somewhat with the number of cycles, it did not exceed the value normally
found in randomly selected unused seals.

3 Excessive Back-Pressure in the Primary
Seal Vent

Larger than expected leakage rates from
primary seal caused buildup of the back-pressure (up to 100 psig) in the 3/8-in.
diameter vent line. To reduce this pressure to the desired value of 1 psig or
less, the vent slze was enlarged from 0,11-1n.? to 1.8-ins° When this configura-
tion was testgd, it was found that the leakage rate from the primary seal dropped
from 1.6 x 10 scc/min to approximately 0.8 x 10 scc/min with pressure in the vent
line never exceeding 3 psig.

AP lThis result appears to be in conflict with the
baslc flow equation, Q = CA (2g =—)Z, which states that the lowering of the back
pressure should have produced a greater leakage instead of an improvement. How-
ever, it may be reasoned that a higher back pressure willl alter the assumed pressure
profile across the sealing surface and the hydraulic balance, thereby providing
the conditions for an enlargement of the leakage gap between the seal faces. 1In
addition to this, the heat generation resulting from seal face rubbing, possibly
causing a phase change in the liquid, can likely produce effects that influence and
greatly change the pure and fundamental relationship of flow, Q = f (AP).



L Liquld Oxygen Boiling on the Seal Face

The effects of liquid oxygen boiling between
the geal surfaces was investigated by comparisons with gaseous nitrogen and water
under static and dynamic conditions., It was found that the leakage increased by
a factor of 10 to 20 when gaseous nitrogen at 450 psi is replaced by either 1liquid
nitrogen or liquid oxygen, and that this factor increased to 400 when the shaft
was rotated at 4,000 rpm. In contrast to this, the gaseous nitrogen static
leakage increased only by a factor of 2 when the shaft is rotated at M,OOO rpm.

No leakage at all was recorded in the tests at static and dynamic conditions with
water as a medium.

The differences in static leakage can be
roughly correlated to the differences in density and viscosity of the respective
fluids.

It was concluded that approximately a ten-
fold increase in the leakage of the cryogenic liquid, when the shaft is rotating
at 4,000 rpm, must have been caused by the rotational effects. Elther generation
of hydrodynamic films or generation of pressure separation forces and vibration
resulting from liquid boiling between the surfaces must be postulated.

5 Loading of the Heal Face
The degree to which the overbalance affects
the leakage was investigated somewhat indirectly by comparing the leakage obtained
in the test of the Sealol seal having 92% overbalance to that of the Borg-Warner
gseal with 7¢% overbalance. The comparison is as follows:

Seal Vendor 9, Overbalance Leakage at 4,000 rpm and 450 psi
Sealol 92 800,000 sce/min
Borg-Warner 76 500,000 sce/min

By using 50% overbalance as a basis for a
fully balanced seal, the above data might be correlated as follows: 92-50 800,000;
this i1s probably just colncidence. 76-50 500,000

It was concluded that while comparison may
not be entirely appropriate because of other design differences, the degree of
difference in excessive seal leakage is small when compared to the 30,000 scc/min
maximum leakage allowed by specification.

C. Effective Diameter Test Measurements
(1) Terminology

1

The term "effective diameter,” a commonly used parameter
of a dynamic seal bellows, defines the equivalent of the piston diameter considering
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the seal bellows as a fluid actuated cylinder. The relationship between "effective
diameter" and seal face loading is expressed in percentage of seal face overbalance:

Exposed Hydraulic Annulus Area

Total Seal Face Area x 1030

Seal Face Balance

AA
=2 x 100 &
A
F |
Where: A:W(rz-rg) ——
A o] e 4
D

And: Ag = T (r 2 _p 0

i ) f /. '
l e I
From this relationship it can be seen that 1f the location of the "effective

diameter" d%vides equally the total seal face area (AA = 0.5 AF), the seal face

balance is ~~ x 100 = 50%. For another example, if +the "effective diameter"
coincides with the inside diameter of the seal face of an externally pressurized

seal, Ké x 100 = % x 100 = 100%. This is alsc called "overbalance" in common

usage igdustry terminology.

From this, it can be seen that the bellows "effective
diameter" is an important parameter because of its direct infiuence upon seal face
balance. Because seal face balance directly affects face loading, which, in turn,
affects seal face wear and leakage, accurate measurement of this parameter is
important in controlling the performence characteristics of bellows type dynamic
seals.

(2) Measurement System

In devising a system suitable for measuring the
"effective diameter" of a seal, it must be recognized that the "effective
diameter" is a parameter of the seal bellows and represents a boundary of a
hydraulic pressure area normal to the axis of the bellows. While it is not
possible to measure this dimension direetly, it can be solved by designing an
arrangement for pressurizing an annulus area between the boundaries of this
unknown "effective diameter” and a fixture piston diameter of known size. If
the force that is acting upon this annulus area, as a result of fluid pressuriza-
tion, is measured, the area of this annulus can be calculated. By knowing the
annulus area and one boundary dlameter of this annular area, the other boundary
diameter, the "effective diameter," can be computed.
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The foregoing, expressed mathematically, is as
follows:

SINTERE  PUSTEON -\

SEAL ASSEMBLY =

FPRESSURE LATENAN
OV EELLOHS

l
sz
F
Annulus Area, AA =75
|

2
Pp

Piston Ares, AP = -5

—

Fl
2 hF>

=0 - 77

Effective Diameter, DE

A typical mechanical design arrangement based upon this
principle is shown in Figure 13. One notable feature is the elimination of mechanical
friction of the fixture pistomn.

(3) Equipment

A seal test fixture, based upon the measuring system
described above, was designed for determining the "effective diameter" of each of
the four bellows of the Sealol seal. Figure 14 shows the test fixture set up for
the primary seal bellows, and Figure 15 for the secondary seal bellows. (The
piston O-rings shown on these drawings, PC No. 12 and 21 respectively, were not
used during testing; therefore packing friction was eliminated.) The seal test
fixture is operated in an TInstron Universal Testing Machine. This machine incor-
porates an electronic load welghing system, a precision cross-head travel control,
and strip chart data recording instrumentation. The facility also includes a
500 psig gaseous nitrogen pressure supply for seal pressurization in the fixture
and "Heise" pressure gages for precision fluld pressure measurements. The equipment
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provides the capability of defining the "effective diameter” as a function of
applied fluid pressure and bellows compression, using gaseous nitrogen as a pressure
fluid for statlc loading at room temperature.

(4) Test Activity and Results

"Effective diameter" checks were made on the primary
liquid oxygen seal bellows of the oxidizer turbine seal assembly P/N 280115,
S/N 023, The testing was conducted for two values of installed bellows compression
(0.093 and 0.123 inch). The results are shown in Figures 16 through 19, where
bellows effective diameter and seal overbalance values are a function of fluid
pressure applied externally to the seal. Computations of this data were based
upon the formulas shown on Pages 30 and 31 of this report. For comparison, the
corresponding values supplied by Sealol are also shown. The results Indicate that
"effective diameter" and seal face overbalance are highly affected by a variation
of fluid pressure acting on the bellows. For 5C0 psi pressure variation, the
"effective diameter" changes as much as 0,110-in,

2. Test Activity Conclusions

Analysis of the foregoing test development results was supported
by theoretical work. The interaction and combination of all effects contributing
to leakage 1s extremely complicated; available theories generally treat the subject
by individual phenomenon and idealized conditions. However, a calculation of film
thickness and leakage rates, based upon the theory of surface variance, indicates
an iInteresting correlation to the actual liquid oxygen leakage experienced in the
tests. This method is described in Appendix E.

In conventional dynamic seal theories and principles, upon which
the subject seal design was based, tight dimensional control and precision sizing
are strong functions in providing optimum seal performance. However, these are
successful only to a point; and, if we consider dimensional proportions of a seal,
the margin of possible improvement narrows drastically with increase of the sealing
diameter. Despite all efforts toward dimensional perfection in manufacturing, the
likelihood of retaining a theoretically perfect seal geometry during assembly and
operation is rather small., TCistortion of the seal elements may be induced by
clamping effects, pressure, and thermal gradients. The seal face locad, which
directly affects wear and leakage rate, requlres a precise hydraulic balance.
However, the hydraulic balance ls subject to considerable variance caused by the
changes in effective diameter of the bellows as a function of pressure and possibly
temperature. Pressure and temperature variations on the bellows also influence,
to some degree, 1ts spring force and thereby, the initial mechanical load on the
geal face., The heat generation at the seal face caused by friction, which in all
likelihood brings about a phase change in the liquid oxygen, is ancther con-
tributing cause to the unpredictable pressure profile that exists at the seal face.
Various theorles are possible to derive from the test observations; however, the
information gathered appears insufficient to acccunt for all interacting phenomenon
of a rubbing contact dynamlc seal of relatively large proportions.
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The test development investigation of leakage causes produced
relatively small improvement results in the areas investigated, with one important
exception. Enlargement of the vent passages reduced the liquid oxygen flow across
the primary seal face from 1.6 x 10° sce/min (56.5 SCFM) to approximately 800,000
sce/min (28.25 SCFM), with the back pressure in the primary seal vent line never
exceeding 3 psig.

In connection with the project requirement, the test results
bring to light the severe lag of rubbing contact dynamic seal technology behind
the requirements of existing turbomachinery and propulsion systems. A seal tech-
nology research activity, conslderably broader than what is possible within the
framework of this project oriented program, is recommended to alleviate the
shortecoming. To satlisfy the immediate project needs, a re-evaluation of the
requirements as well as the hardware development potential appears in order.

This includes consideration of a system modification which may provide the
desired results in other ways than precise, rubbing contact "Zero Gap" seal
faces.

D. MODIFICATION OF THE SEAL SYSTEM FOR TURBOPUMP USE

1. Concept and Design Philosophy

In evaluating the degree of seal performance that was accom-
plished by development through Phase IT of this program, it was evident that
there was sti1ll much improving to be done to achieve the established goal and
the performance necesgsary for M-1 oxidizer turbopump aprlication. Timely accom-
plishment of this by pursuing development along the same lines was impractical.
Consequently, a modification of the seal system was devised by introducing a con-
tinuous gaseous nitrogen purge in the seal neutral cavity. This technique restored
both the effectiveness of the seal system and provided the means to positively
prevent the mixing of the hot gas turblne gas with liquid oxygen. The purge
pressure is maintained at 5 psig which is higher than cavity pressures under
typical primary leakages. Minimizing the pressure buildup between the respective
primary and secondary seals was accomplished by enlarging the vent passages from
these eavities. TFigure 20 is a schematic 1llustration of the purge system.

2. Seal Hardware Modification

Implementation of the above described purge technique was
predicated upon enlarging the vent passages of existing seal hardware. The
original venting consisted of three 0,370-in. inside diameter lines: one connecting
to the liquid oxygen cavity between the primary and secondary seal face; one to the
hot gas cavity between its respective primary and secondary seal face; and one
connecting to the annulus between the secondary liguid oxygen seal and the
secondary hot gas seal. To this, twelve 1/2 in. diameter passages were added for
liquid oxygen and six 3/8 in. diameter passages for hot gas. Also, provisions for
six additional 3/8 in. passages to the "neutral" cavity were provided; however,
only one additional 3/8 in. passage was used for supplying the continuous gaseous
nitrogen purge to the cavity between the liquid oxygen secondary seal and the hot
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gas secondary seal, Filgure 21 shows the location of the respective passages in the
seal.

E, APPLICATION OF THE MODIFIED SEAI. SYSTEM IN THE M-1 MODEL I
OXIDIZER TURBOPUMP

1. Installation of the Modified Seal System

The drainage of oxygen leakage across the primary liquid
oxygen seal is routed through twelve 1/2 in. diameter holes to the outside of the
seal flange; there it is collected in an annular chamber and then piped through
twelve 5/8 in. slze tubings to a facility disposal manlfold some distance away
from the turbopump. Figure 22 1llustrates the mechanical arrangement of the
flow passages,

Hot gas leakage past the primary hot gas seal is channeled through
the seal flange vla six 3/8 in. diameter passages. The seal flange i1s provided with
appropriate tube fitting connections and the leakage flow 1s piped to a disposal
manifold by six 1/2 in. size tubings (See Figure 23).

Flgure 24 shows the supply routing of the continuous gaseous
nitrogen purge. This maintains a pressure of 5 psig gaseous nitrogen in the
"neutral cavity' of the seal assembly. Adequate drainage lines for liquid oxygen
and hot gas from the cavitities between the respective primary and secondary seals
asgsure that the back pressure in these vavitles is less than 5 psig. Therefore,
neither liquid oxygen nor hot gas can pass the secondary seals and enter the
"neutral cavity." However, there 1s some flow (washing actlon) of gaseous nitrogen
from the neutral cavity past the secondary liquid oxygen seal and the secondary
hot gas seal from where it is evacuated through either the oxygen drain lines or
the hot gas drain lines as a mixture with the respective medium.

The use of many relatively small size lines for piping the
leakage from the seal to the outside of the turbopump was a development expediency
utilizing existing hardware.

2. Performance During Turbopump Testing

The M-1 liquid oxygen turbopump turbine seal, using a low
pressure gaseous nitrogen purge to prevent the mixing of cryogenic bearing coolant
with the hot, hydrogen-rich turbine gas, was tested in the M-1 oxidizer turbopump
asgembly (S/N 001, Buildup 2).

Fourteen turbopump tests were run and 148 sec operating time
was accumulated. The subject seal performed without failure. The measured
gaseous nitrogen purge pressure was varied between 1.4 to 7.4 psig during the
test runs. The gauge pressure in the primary seal vents for bearing coolant
and hot gas, respectively, was zero at all times., This is a posltive indication
that mixing of the eryogenic bearing coolant with the turbine hot gas was
reliably prevented. However, the cryogenic bearing coclant for thls turbopump
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test series was liquid nitrogen and not liquid oxygen. No measurements of purge
fluid flow rate were taken, but calculations indicate this to be less than 0.0l 1lb/sec.

Pre-test statlic leakage was checked by applying 50 psig nitrogen
gas without having the purge connected to the "neutral cavity." The leakage was
60 cc/min, across the primary liquid oxygen seal and 90 cc/min across the primary
secondary seal. There was no static leakage across either of the secondary seals.

IV. CONCLUSIONS AND RECOMMENDATTIONS

The problem solution to positively prevent the mixing of hydrogen-rich hot
turbine gas with liquid oxygen was provided by the introduction of nitrogen gas
serving as a neutral barrier between the potentially explosive media. This seal
system was Installed in the M-1 Model T liquild oxygen turbopump and it was success-
fully operated.

The initlal program attempt to achieve the stringent leakage requirement
through a process of development to perfect a multi-element bellows face seal
was abrogated after it became apparsmt that the necessary degree of perfection
might not be obtalnable within the time 1imit and mileposts established for the
turbopump. Extrapolation of normal seal design criteria as derived from smaller
seals does not appear to result in satisfactory large seals. In particular, the
rigidity of the carbon retainer 1s inadequate in large seals to maintain low
leakage at high pressure differentials.

By chamging the solution approach and introducing a low pressure (5 psig)

gaseous nitrogen purge to the seal's neutral cavity, a practical problem solution
was provided and completely satisfied the project requirement.
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APPENDIX A

NOMENCLATURE

AA = Exposed Hydraulic Annulus Area, In.2

AF = Total Seal Face Area, Ino2

AP = Fixture Piston Area, In,2

DE = Bellows Effective Dia., In.

DP = Fixture Piston Diameter, In.

F = Total Axial Load on Seal Face, 1lb.

P = Fluid Pressure on Bellows, Psig

AP = Change in Pressure, Psi

P = Fluid Specific Weight, 1b/in,3

C = Constant

g = Gravitational Acceleration = 386-in./sec2
r_ = Seal Face Outside Dia. + 2, in.

r, = Seal Face Inside Dia. <+ 2, in.

r, = Bellows Effective Dia. +2, in.

A = Area, in.,2

sce/min = Standard Cubic Centimeter Per Minute
SCFM = Standard Cubic Feet Per Minute
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APPENDIX B

ANALYTiCAL TREATMENT CF SEAL LEAKAGE

L. INTRODUCTION -

The resulﬁs from testing the liquid oxygen seal at operating conditions
showed that the ieakage rates were greatly in excess of those predicted by the
seal designers (i.e., some 800,000 cc/min compared to 30,000 raximum expected).

In this case, the seals were designed by the common practice of extrapo-
lating information obtained from earlier experience by thé seal manufacturer,
Outside of the mechanical features of the seal such as bellows design, method of
carbon mounting, choice of materials, etc. which are afock-in-trade items of the
seal manufacturer, the most important parameter by which the designer hopes to
control leakage rates and life of the seal, is so called "overbalance". Broadly
speaking, overbalance determines the amount of hydraulic load applied to the back
6f the seal in order to keep the carbon against thc'rotating ring with enough
force to minimize the leakage, yet not so large as to cause rapid wear of seal
elements.

The term overbalance is in itself somewhat of a misnomer, since it implies
a lack of balance. In actuality the forces acting on the seal from both sides
Are always equal and therefore always in balance, as explained in Section II.

A selection of particular value of overblance is related to the expecta-
tion of a particular profile on the sealing face, e.g., Overbalance = .52 implies
a linear pressure drop from outer to inner seal diameter; Overbalance = 1,0 implies
a constant pressure from outer to inner seal diameter. In both cases a uniform

and constant pressure profile around circumference is implied.
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The current state-of-the-art, when applied to the design of the liquid oxy-
gen seal, apparently dictated the choice of 0.92 overbalnace on the basis of pre-
vious experience of the seal designers. However, it should be pointed out that
opinions varied between experts as to correct choice with values varying from
0,66 to 0,92,

The weakness of this empirical approach is that the film conditions vary
greatly depending upon the application and currently there are no means of esti-
mating leakage rates as a function of overbalance as applied to design. Clearly,
in order to eliminate the trial and error approach, a mathematical model describing
the film conditions between the faces as a function of overbalance, seal geometry,
sealing surface conditions, fluid properties, operational conditions and then
relating these to leakage rates, is needed. A number of such models, based upon
vibration, surface tension, or surface waviness, are described in seal literature
although none, to the writers knowledge, combines all effects in a single model.

To list some - Reference 1 describes the effect of axial vibration on the
pressure between the sealing faces and in Reference 2 the effects of surface ten-
sion on the film thickness and leakage rates are examined, In Reference 3 the
effects of seal surface wavinesa on the pressure profile and leakage rates are
described.

The hydrodynamic theory developed in Reference 3 was selected as a basis
for the attempted amalytical correlation. It was recognized that this the mathe-
matical model was not necessarily complete or even correct, since however, it
contained relationships between the important design and performance parameters
(i.e., leakage, overbalance, seal size, pressure, rpm, fluid properties, (viscosity)

and seal surface conditions) and the results were in the form which could be used
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with very minor rearrangements, It was felt that this theory may serve as a useful
opening, to which refinements and additions would be made in the future. The seal
development program was, however, discontinued and therefore this report contains
only the description of the method and initial results. It should be pointed out,
however, that the leakage rates as calculated are surprisingly close to those
reported in tests, and therefore the approach may warrant further investigation.

In addition, the writer believes that (at least in a qualitative sense)it is a step
forward in an attempt to elucidate the mechanism of dynamic sealing.

II. CONCEPT OF OVERBALANCE AND ITS INADEQUACY AS PRINCIPAL DESIGN PARAMETERS

It was already pointed out that the current state-of-the-art of seal design
is such that the designer must make a purely empirical selection of the principal
design parameter (i.e. "overbalance") which then controls the hydraulic loading of
the seal and will hopefully result in low leakage and satisfactory seal life. The

concept of "overbalance" is obtained from the following basic relationships:

Consider Figure B-1 where: Nose Piece
r, outside radius of seal
r;i inside radius of seal
ro effective diameter of bellows FF
(i,e,, 0.D. of equivalent
seal piston)
P, sealant pressure
P; vent seal pressure
(assumed zero) Seal
Bellows
FS spring force of the bellows Rotating
(negligible comparing to Ring
hydraulic forces and is
neglected) s T3 Te
Pp 1local pressure on the front Figure B-1

face at radius r.

Py local pressure on the back of
the seal at radius r.
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Since seal is in equilibrium under the action of all forces

Fp + Fg = Fp and Fp = Fp approximately (1)

B

In order to obtain the value of both forces in terms of known pressure P, and

seal dimensions equation (1) must be put in the differential form,

g 2 /1
/bTT r 2T /1o
PB o r , d!‘ o dg = PF ¢ I o dI‘ o dg (2)
r r ro r
/

In order to integrate both sides of the Equation (2) it is necessary to
determine the form of pressure profile on both back and front faces of the seal
both as a function of radius (r) and also of angle (8).

For the back face pressure (Pp) is assumed constant and equal to Pg,
i.e.y Py (r,8) = Py

2TT T,

Therefore Fp = P
o

2

s v . dr . d8 = Y P, (r°2 = rg’) (3)

r e

For the front face the matter is more complicated siuce the pressure profile is
not known. Making a usual assumption that pressure Pp varies linearly betw=en

r, and r; and maintains the same profile around the circumference,

i.e., Pp (r,@) = Py {j ) j}

Fp = Py (%o + Ti) X ( ro?

( rg + rj)
= KT Py (r,? = ri?) (4)
for thin seal face where :g <<. 1.1 K =~ .5

Combining equations (1), (3), and (4) results in
ro? _ r.2
2 2
r .
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Expression for K in Equation (5) will be readily recognized as the "overbalance", a
parameter commonly used in seal design terminology.

Its magnitude was shown to be approximately .5 if pressure profile was linear
on the 'sealing" face of the seal, and it can easily be shown that it will be progres~
sively larger and may even exceed 1.0 if pressure is "bulging out" from linearity.

In present day seal design practice the value of overbalance is selected by
the designer on the basis of his previous experience and this value is used in equa=-
tion (5) to determine effective radius (re) of the bellows for this particular appli-

cation,

It appears that the empirical approach to the selection of overbalance is un-
satisfactory at least with respect to making predictions of leakage rates and life
in novel designs like liquid oxygen seal and that the designer must be furnished with
better and more fundamental basis for the selection of K involving considerations of
seal operational requirements (pressure and speed), sealing fluid properties, seal
size (ry), and allowable leakage and minimum life requrements, if guess-work is to be

eliminated from the seal design.

An attempt of resolving this problem in reverse is to determine the leakage
as a function of K for the M-1 primary liquid oxygen seal on the basis of mathematics
of hydraulic film between the wavy surfaces in relative rotary motion. This is

described in Section III,

111, LEAKAGE RATES VS OVERBALANCE CALCULATIONS BASED ON SURFACE WAVINESS THEORY

The method of calculation of leakage rates as a function of overbalance for the
liquid oxygen primary seal was derived from the mathematical relationships described
by F. A. Lyman and E. Saibel in the paper entitled "Leakage in Rotary Shaft Seals" and
based upon the concept of hydrodynamic film development between wavy surfaces in rela-
tive motion. The derivation of the mathematical equations is shown by directly repro-
ducing pertinent parts of the authors work using their teminology. These equations
are then rewritten in terminology useful to the seal designer and are used to calcu-
late leakage rates that would be expected in the liquid oxygen seal on the basis of

this theory.
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A. DERIVATION OF BASIC EQUATIONS

(Derived in F. A. Lyman and E. Saibel report)

Introduction

This paper presents some preliminary results of a
theoretical investigation of leakage through a rotary shaft
seal (Fig. 1). If the faces of the seal were perfectly flat
and exactly parallel, in the absence of axial motion of the
faces the leakage through the interfacial gap would be
independent of the shaft speed and proportional to the
pressure difference across the seal. The pressure in the
gap would be of the order of the average of the inner and
outer pressures. lHowever, Jagger [1] and Denny {2] have
noted that pressures considerably higher than this are de-
veloped in radial seals. Furthermore, the leakage rate
was found to depend on shaft speed [2].

Theoretical investigations of the effect of axial
vibration on the pressure developed in rotary shaft seals
have been carried out by Iny and Cameron (3], Whiteman
(4], and Nahavandi and Osterle [5]. In the present study,
attention is concentrated on other possible causes for the
dependence of pressure and leakage on the shaft speed:

1. Waviness of the faces, i.e. small continuous
variations in the interfacial distance.

2. Shaft misalignment, causing nonparallel surfaces

and/or wobble.

Analysis
Reynolds’ equation in polar coordinates (r, ¢, z) for
the flow of an incompressible fluid in the thin film be-

' This work was sponsored by the U.S, Neval Engineering
Experiment Station, Annapolis, Marylend.

tween the stationary surface z = 0 and the rotating sur-

face z = A (r, &, t) is
d d d dh dh
ri (har—-{))+ — (ha—E' = 6urt (m—-+2'—'>..
ar ar dd d¢ o dt
(1)

where r and ¢ are the polar coordinates of a point
t is time
h is {ilm thickness
p is pressure
w is angular velocity
and p is coefficient of viscosity
Therate of flow in the radial direction per unit of
circumference is

;. .
R® 9

qff”r de= - — &, @
12u Jr

so that the leakage through the seal can be found from (2)
once the solution of (1) is known.

Equation (1) will be applied to the two cases mentioned
above.

1. Effect of Waviness in the Rotating Face

Suppose the waviness is on the surface of the rotating
seal. Thus in a system of coordinates which rotates with
angular velocity w (Fig. 2), & is independent of time, so
if we let @ = ¢ - wt, h=h(r, 6) and (1) becomes

d ad d ad ak
r —(h’r -—E) + = (h’ L) = ~ bpwr’ —

(1.1)
or ar 09 0f a0
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FIGURE 1. ROTARY SHAFT SEAL

Let the waviness be described by the function
h=h,(1+ecosb) (1.2)

where 0 <¢ < 1. An exact solution of (1.1) for h given by
(1.2) has not been found. Here an approximate solution
will be obtained by a perturbation method. It is assumed
that ¢ is small, and the pressure is expandedin powers
of e:

P=py(r)+ep,(r,0) + e’p,(r,0) + ... (1.3)

After substituting (1.2) and (1.3) into (1.1) and setting
the coefficient of each power of ¢ equal to zero, we obtain
the equations

’%(rj—f—'%% =%r28i"0 (1.5)
2 E) T oo (2
- 3£—<cos 6 Z‘;') 0.6}

The solution of (1.4) which satisfies the boundary
conditions

Po @) = pq (1.7)
Po(b)=pb
is
r
p,=A4, ln—+p, (1.8)
a
where
pb - pu
Ao = ——2.

ln -
a

Equation (1.8) representa the pressure distribution in a
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Fixed

coordinates -, e rota //h] coordinares .

7/

FIGURE 2. COORDINATE SYSTEMS

parallel surface seal, andthis pressure is independent of

w.
The solution of (1.5) which satisfies the boundary
conditions

p,a,0)=p (5 6=0

is
P, =—2ﬂ:- >+ Ar + B,r") sin 6 (1.9)
0
where ) b _ o
1 == b2 _ g2

a®*b%(5 ~a)
b2 - a?
Since (r*+A,r+B,;r~') <0 fora<r<b, p, 20 for
7 <60 <2nm, i.e. in the converging portion of the film.
Since negative pressures are unrealistic, p, will be

assumedto be zero for 0 <9< .

The load contributed by p, is

27 b
pw 2ab
W'=’/”‘./‘:p|rdrd0=.-3—}—.—§-(b-—a)'(b+a+b*a) (1.10)

In the absence of applied pressures, ¢¥, is the total
load-carrying capacity of the seal, correct to the second
order in e. If a log-log plot of b vs. W', were made from
(1.10), the result would be a straight line with slope -.5
Log-log plots of Denny’s experimental results ((2], Fig. 3)
also appear as straight lines, but with slopes of about
-2 or -.3.

The rate of flow through the seal in the radial direction

. 2n |
Q-f q,rd6
(]

(1.11)



Writing Q = Q) +¢0, +€2Q, +..., from (2) we find

2m

. ' 3A
Q s h=ra—p°d0=-1’f°——° (1.12)
° 12u ° ar 6pn
3 an d
0 .._.-’ﬁ’—j (ra—p—'+3c090rﬁ>d9
Y 12u4 ar dr
P20
h! 2w a
e | Prag
12p J, ar
p,20
(1.13)

= %" (2r® + A;r = B, r=')

The inward leakage rate for no pressure difference
across the seal is —(Q,) _, and is positive.

Substitution of (1.9) into (1.6) leads to thefollowing
equation for p,:

d dp z)

9%, 3w
r—|{r —2
ar dr

+ = (=22 +A,r+B.r~"sin20 (1.16)
a6*  AZ v

The solution of (1.16) which satisfies the boundary con-
ditions p,(a,6) =p,(5,0) = 0 is
3 1 A B
P, =~ ‘;—?(—Zrz In r+3—' rig‘ rt e A2r2+Bzr'z> x sin 2A
3uw (1.17)
== () sin 26
0

where
4 16*Inb-c*lna A, b -a® B, b-a
2T79 7 pe_at 3 b'-a* 3 b*-at

B =l a*b* In b/a

2 2 b‘-a‘

Since f,(r} <0 fora<r<b, p, >0 for 0<O< n/2 and
n <8<3n/2.? Hence the second order term for the load

capacity is
2m b 6 b
)
W, "‘f f pyrdrdf = ~ :zf rf, (r) dr
0 a 0 a
p, 20
6,um[ b*-a* 4 B,

.2
— (B2 -a%) + -
hy

b
- 8 In-
32 % 7 (b a)+2na:l

(1.18)
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The radial flow rate is

s o P 3
Q,=- Ao f (r.aﬂzf3cos€r—a£r‘ + 3coszGr—a—:i> d0

12, A r
P p,20 (1.19)
But
27 o,
cos r— d0 =0
dr
V]
p, 20

2 3
f cos? 0r—-a£9d6=ﬂA°

r
[}

F; ] w
f (Prag--—rhy
° a" 0

p, 20

lence the second correction to the inward leakage rate

is .
h, [ a® A, B
Lz=(—Q2)'=a = —Q-J?q(% va? lna+—3‘ a —-3—‘ a”!
3
mhhke (1.20)

+ 24,a% - 2320'2> - i
Note that W,, L, depend on w and A in the same
manner as do W, L . If as above ¢ = 107°, then (sz and
€*L ,would be negligible compared to eW,, eL . For this
reason W, and L, will not be numerically calculated here.



B, EXTENSION OF THEORY TO SEAL DEVELOPMENT PROBLEM
Using the above equations and extending the mathematical development
into the commonly used seal terminology, the relationship between leakage and over-
balance are obtained as follows:

From 1.3 total force between sealing faces

21T (b
2
WF = “ pr‘.,dr‘ odO:—;Wo +EW1 "‘e W2 1,21
ro a

2y

where Wy == ST (py - pa) (b? - a 1,22
Wi M W_ (b«a)a ):b+a+ 2 ab 1,23
3h 2 b+ a
Q
4 4 A B
s M (W b'-a 1 3 _ .3 1 b
W, = , - + (b - a°) + = (b-a) + B, 1ln — 1.24
2 2 [:h 32 36 4 2 ;)
[+]
Ah
also £ = > » 1,25
Ao = bz Fa
b
in -
a
3 3
Al:ab_=a
b2 " a®
Ay = - &,(b“ln b- a*lna).  f1fpd-a%) Bifp . a
2 p4 - g4 3 \p4 = a4 3 bu - au
B, = ab2 (b - a)
(b? - a?)
\
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From kquation 4 of Secuion 11
Wp = KAT (Pp =Pg) (b? -a?) 1,06

Combining equations 1,21, 1,22, 1,23, l.24, 1,25, 1,26 the overbalance K can be

expressed in terms of seal parameters as follows:

K= .5 +l°37“"l°=Ath(b‘a)3 ):D+a+2ab j +
3 2 2 b+ a
ho (Pb‘Pa) (b®-a")
1.237 x M_x_ o an? E‘«ea‘* Al (13.43) _
- - B1 b -
q - 2.2 32 36 — (b=a) =B, 1n = 1,27
h* (P, -P_)(b%-a?) m 2 1 =

trom equations 1.12 and 1.13 and 1.20 expressions for the leakage of liquid oxy-

gen can be derived as follows:

2
QxQQ+ £Q +&E° Q+- ~ - - - - - - - 1,28
T ho? Pp_P
on w—-—-—o——- ...b- a L
6 M 1n E
a
o x WM (224 a4 B .
X 1 =

2 \2 3 3a
. Aoho® 1)
L‘ <
Assuming e = A h
2ho
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hod (Pp = P
Q = 1.989 x 10° 2o~ (Fb - Pa) -

A« 1n 2
a

. i B
6t x 10% (U Ab L’de + Aja - L -

a
B
123 » 102 ) Oh?1aZ 4 2ipa + AL UBp 45 20222
h 2 3 3. 2 a2
o a
2 (P, . P
-75,79 Po_ 4 h% (b - Fa) 1.32
M In D
a
Converting leakage of liquid oxygen at 160°F and 450 psi to
gaseous oxygen at 1l60°R and 15 psia results in ans = Q x 7800 1.33

C. APPLICATION OF THEORY TO LIQUID OXYGEN SEAL
Equation 1.27 and 1,32 are sufficient to obtain leakage Q in terms of

overbalance K,

o
i

= 3.45~-In,

3,335-In,

1]
u

= 450,0 psia

o
o
I

o
"

0 psia

&

9,17 x 10~/ 1b,/in sec.
() = 419 rad/sec (N = 4,000 rpm)
0,B. = .92 (design)

Ah = 400 x 10™% inches (typical from measurements before installation)
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The results of this calculation are shown in Figure B-2 where the leakage is plotted
against overbalance for values of waviness from Ah = 500 x 10-6-in. to

Ah = 100 x 1078-in,

For the seal having .92 overbalance and waviness of 200 x 10~° to

400 x lO'B-inoﬁ expected leakage would be 800,000 cc/min., to 1,600,000 cc/min. as
shown in Figure B-2, This compares favorably with 800,000 cc/min. actually recorded
in the tests with this type of seal.

1V, CONCLUSIONS

A calculation of leakage from the liquid oxygen seal design parameters and
the degree of "overbalance", on the basis of hydrodynamic film theory, was made.

A surprisingly close agreement between the calculated and experimentally cbserved
values of leakage was obtained.

The calculated thickness of the hydrodynamic film shown on Figure A-2 is less
than the waviness of the seal surface, This can be interpreted as indicating inter-
rupted film (carbon to ring contact at the asparities and fluid film in the surface
depressions). The experimental evidence of carbon wear in presence of high leakage
rate is in agreement with this interpretation,

The major deficiency of the mathematical model is that the seal surface
deformation is not determined as a function of hydraulic film pressure. With highly
flexible seals, like the liquid oxygen seal, it is probably the combination of film
forces and carbon flexibility that determines waviness of the surface during opera-
tion and therefore the rate of leakage and wear, For the present, the only possi-
ble course was to assume that the surface waviness of the seal, as measured prior to
tests and generally of the order of 3x10~% to 5x10™" inches was not changed sub-
stantially when the hydraulic forces were acting on both sides of the seal during

running.
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In addition, a single phase incompressible flow was assumed in the mathe-
matical model and the solution was derived assuming small surface perturbations
(waviness). In fact, the solution was used for calculation of leakage through
large gaps and therefore further investigation and perhaps modifications and
additions to the model may be required before its general usefulness to the pre-
dictions of seal performance from design parameters is established.

Specifically, it is felt that inclusion of two-phase flow, carbon flexibility,
and the vibration in presence of a fluid film (or partial fluid film) between seal-

ing surface, would bring the present model closer to describe a real seal operation.
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